Learning From Crowds
نویسندگان
چکیده
For many supervised learning tasks it may be infeasible (or very expensive) to obtain objective and reliable labels. Instead, we can collect subjective (possibly noisy) labels from multiple experts or annotators. In practice, there is a substantial amount of disagreement among the annotators, and hence it is of great practical interest to address conventional supervised learning problems in this scenario. In this paper we describe a probabilistic approach for supervised learning when we have multiple annotators providing (possibly noisy) labels but no absolute gold standard. The proposed algorithm evaluates the different experts and also gives an estimate of the actual hidden labels. Experimental results indicate that the proposed method is superior to the commonly used majority voting baseline.
منابع مشابه
Active Learning from Crowds with Unsure Option
Learning from crowds, where the labels of data instances are collected using a crowdsourcing way, has attracted much attention during the past few years. In contrast to a typical crowdsourcing setting where all data instances are assigned to annotators for labeling, active learning from crowds actively selects a subset of data instances and assigns them to the annotators, thereby reducing the c...
متن کاملTraining Agents by Crowds
On-line learning algorithms are particularly suitable for developing interactive computational agents. These algorithm can be used to teach the agents the abilities needed for engaging in social interactions with humans. If humans are used as teachers in the context of on-line learning algorithms a serious challenge arises: their lack of commitment and availability during the required extensive...
متن کاملClustering Crowds
We present a clustered personal classifier method (CPC method) that jointly estimates a classifier and clusters of workers in order to address the learning from crowds problem. Crowdsourcing allows us to create a large but low-quality data set at very low cost. The learning from crowds problem is to learn a classifier from such a lowquality data set. From some observations, we notice that worke...
متن کاملThe Wisdom of Crowds in Bioinformatics: What Can We Learn (and Gain) from Ensemble Predictions?
The combination of distinct algorithms expertise to improve prediction accuracy, inspired by the theory of wisdom of crowds, has been increasingly discussed in literature. However, its application to bioinformatics-related tasks is still in its infancy. This thesis aims at investigating the potential and limitations of ensemble-based solutions for two bioinformatics prediction tasks, namely inf...
متن کاملCEKA: a tool for mining the wisdom of crowds
CEKA is a software package for developers and researchers to mine the wisdom of crowds. It makes the entire knowledge discovery procedure much easier, including analyzing qualities of workers, simulating labeling behaviors, inferring true class labels of instances, filtering and correcting mislabeled instances (noise), building learning models and evaluating them. It integrates a set of state-o...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 11 شماره
صفحات -
تاریخ انتشار 2010